PLACE VALUE

Pearson Edexcel - Tuesday 19 May 2020 - Paper 1 (Non-Calculator) Higher Tier

1.

9	0.000 672,	B2	cao	Accept correct numbers in any form
	67.2 × 10 ⁻⁴			
	6.72×10^{5}	(B1	for correct conversions to same format, condoning one error	
	672 × 10 ⁴		or for 3 numbers in the correct order (ignoring one)	
			of for 3 numbers in the correct order (ignoring one)	
			or for all 4 numbers listed in reverse order)	
			, and the second	

Pearson Edexcel - Thursday 2 November 2017 - Paper 1 (Non-Calculator) Higher Tier

2.

8	0.246, 0.246 0.246, 0.246	M1	for correct use of recurring symbol eg $0.24\dot{6} = 0.24646$ or 3 terms in the correct relative position
	0.210, 0.240	A1	cao

Pearson Edexcel - Monday 9 June 2014 - Paper 1 (Non-Calculator) Higher Tier

3.

17	(a)	1	1	Bl cao
	(b)	$\frac{1}{100}$	1	B1 for $\frac{1}{100}$ or 0.01
	(c)	$0.00273 \\ 27.3 \times 10^{-3} \\ 2.73 \times 10^{3} \\ 2.73 \times 10^{3} \\ 273 \times 10^{2}$	2	M1 for converting all numbers to same form with at least one conversion correct A1 for fully correct order with correct numbers in any correct form (SC B1 if one number incorrectly placed or all 4 numbers listed in reverse order)

Pearson Edexcel - Tuesday 11 June 2013 - Paper 1 (Non-Calculator) Higher Tier

4.

	T /			
19 - 5, 0.3	0.2, 0.5, 1	$-5, 5^{-1}, 0.5, 5^{0}$	2	M1 for either 5 ⁻¹ or 5 ⁰ evaluated correctly
				A1 for a fully correct list from correct working, accept original numbers or evaluated (SC B1 for one error in position or correct list in reverse order)

Pearson Edexcel - Tuesday 6 November 2012 - Paper 1 (Non-Calculator) Higher Tier

5.

0.038 × 10 ⁻ , 380 (ignoring one) or reverse order A1 for correct order (accept any form)	20	$0.38 \times 10^{-1}, 3800 \times 10^{-4}, \\ 0.038 \times 10^{2}, 380$	Correct order	2	M1 changing any one correctly or at least 3 in the correct order (ignoring one) or reverse order A1 for correct order (accept any form)
--	----	---	---------------	---	---

OCR GSCE – Thursday 8 November 2018 – Paper 5 (Non-Calculator) Higher Tier

2		9 with correct rounded values shown nfww	3	M1 for a first correct calculation with one pair of <i>their</i> rounded values	Condone e.g. 0.300 M1 can be implied by 180, 30, 0.015, 9.09, 9.15

OCR GSCE – Monday 12 November 2018 – Paper 6 (Calculator) Higher Tier

7.

ſ	4		$(4.7) \le (x) < (4.8)$	2	B1 for each symbol	

OCR GSCE – Tuesday 12 June 2018 – Paper 6 (Calculator) Higher Tier

8.

3	$\frac{300 \times (7-3)}{60} = 20$	3	B2 for 300, 7, 3 and 60 seen	Actual answer 19.475959(may be rounded) scores 0
	AND		or	
	it is close to 19.5 oe		B1 for two of 300, 7, 3 and 60 seen or 300, 4 and 60 seen	
	or		or 300.0, 7.0, 3.0. 60.0	
	19.5 rounds to 20 oe or		AND	
	[Asha's estimate] is reasonable		B1dep for result 20 and correct conclusion following B1 or B2	Accept "Yes" or "She's right" or "It is" or equivalent comment

OCR GSCE – Sample Papers – Paper 5 (Non - Calculator) Higher Tier

9.

15	(a)	$\sqrt{35}$, 2.5 ² , $\frac{20}{3}$, 6.83	2 2 AO1.3b	B1 if one is in the wrong place, but others are in the correct order or reverse order
	(b)	4+2√3	3 3 AO1.3a	M1 for expanding $ (1 + \sqrt{3})^2 = 1 + \sqrt{3} + \sqrt{3} + \sqrt{3} \times \sqrt{3} $ B1 for $\sqrt{3} \times \sqrt{3} = 3$ soi

AQA GSCE – Tuesday 19 May 2020 – Paper 1 (Non - Calculator) Higher Tier

Q	Answer	Mark	Comments			
21	Smallest $3\sqrt{23}$ 15.6 $\frac{47}{3}$ Largest 2.1^4	B2	B1 three values in correct order if the other value were removed eg Smallest 3√23 2.1⁴ 15.6 Largest 47/3			
	Additional Guidance					
	Mark the answer only					
	Accept equivalent values used on answer lines					

AQA GSCE – Thursday 4 June 2020 – Paper 2 (Calculator) Higher Tier

11.

	a^2	B1		
4	Guidance			

AQA GSCE – Thursday 4 June 2020 – Paper 2 (Calculator) Higher Tier

	24.5 or 25.5 or 7.45 or 7.55	B1	accept 25.49 for 25.5 accept 7.549 for 7.55	
	30 × their 25.5 or 765 or 20 × their 7.55 or 151	M1	their 25.5 must be (25, 2) their 7.55 must be (7.5, 2)	
	30 × their 25.5 + 20 × their 7.55 or 765 + 151 or 916	25.5 26] 7.6]		
26	25.5 and 7.55 and 916 and Yes	A1	oe eg 25.5 and 7.55 and -4 and Yes	
	Ad			
	Only using lower bounds can score a			
	Condone 25.50 for 25.5 etc			
	916 and Yes without both 25.5 and 7 marks are possible			
	eg 30 × 25.5 + 20 × 7.54 (= 915.8) =	3	B1M1M1A0	
	916 and Yes with no working			Zero
	Yes can be implied			
	eg1 30 × 25.5 + 20 × 7.55 = 916 w			B1M1M1A1 B1M1M1A1
	eg2 30 × 25.5 + 20 × 7.55 = 916 so	sne can		DIMINIMIA

AQA GSCE – Tuesday 11 June 2019 – Paper 3 (Calculator) Higher Tier 13.

	8.5(0) or 9.49 or 9.5(0) or 6.25 or 6.74 or 6.75	B1		
	9.49 + 6.74 or (9, 9.5] + (6.5, 6.75]	M1		
6	16.23	A1	accept (£)16.23p SC2 16.25 or 16.24	
Additional Guidance		Guidance		
	9.5(0) and 6.55 with answer 16.05			B1M1A0
	9.4(0) and 6.25 with answer 15.65			B1M0A0
	9.4(0) and 6.55 with answer 15.95			B0M1A0

AQA GSCE – Monday 12 November 2018 – Paper 3 (Calculator) Higher Tier 14.

19	30.25 or 29.75 or 5.85 or 5.75 their 30.25 – their 5.75	B1 M1	Must be their max roll — their max must be (30, 3 their min must be [5.5, 5	0.5]
	24.5	A1		
	Additional Guidance			
	30.5 - 5.75 = 24.75			B1M1A0

AQA GSCE – Monday 24 May 2018 – Paper 1 (Non - Calculator) Higher Tier 15.

4	500	B1	

AQA GSCE – Monday 24 May 2018 – Paper 1 (Non - Calculator) Higher Tier 16.

	One correct conversion to a comparable form 0.08 × 10 ⁻² or 0.0008 400 × 10 ⁻⁴ or 0.04 0.06 × 10 ⁻² or 0.0006 7 × 10 ⁻² or 700 × 10 ⁻⁴	M1		
	6×10^{-4} 8×10^{-4} 4×10^{-2} 0.07 with no clearly incorrect working	A1	oe accept in converte	ed form
12	Additional Guidance			
	Correct answer from clearly incorrect working			A0
	Accept numbers with two decimal points if it is clear that the point has been moved to the correct place eg 0.0008.0 with curved lines between each place value between the decimal points			
	If the numbers are converted into fractions, at least two must be given correctly with common denominators to score the first mark			
	eg $\frac{4}{100}$ and $\frac{7}{100}$			M1
	eg $\frac{6}{1000}$ and $\frac{8}{1000}$ only			МО
	eg $\frac{6}{10000}$ and $\frac{7}{100}$ only			МО

AQA GSCE – Tuesday 12 June 2018 – Paper 3 (Calculator) Higher Tier 17.

	3.27	B1		
3	Additional Guidance			

AQA GSCE – Thursday 2 November 2017 – Paper 1 (Non - Calculator) Higher Tier 18.

	Alternative method 1				
	Three whole numbers that each are less than 80 and have units digit 4				
	or	M1			
	States that each number must have units digit 4				
	82	A1			
	Alternative method 2				
8	Correctly evaluated trial for three whole numbers, none of which are a multiple of 10, and that, when rounded, total 70	M1	eg 33 + 33 + 13 = 79		
	82	A1			
Additional Guidance		Guidance			
	39 + 33 + 13 = 85 (40 + 30 + 10 = 80)			MO	
Beware 82 from incorrect values, eg 39 + 24 + 19 = 82			19 = 82	M0A0	
	Ignore incorrectly evaluated trials that	Ignore incorrectly evaluated trials that do not solely lead to the answer			

AQA GSCE – Sample Paper 3 (Calculator) Higher Tier

3	0.667	B1	